Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 295(28): 9583-9595, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32439804

RESUMO

DNA lesions can severely compromise transcription and block RNA synthesis by RNA polymerase (RNAP), leading to subsequent recruitment of DNA repair factors to the stalled transcription complex. Recent structural studies have uncovered molecular interactions of several DNA lesions within the transcription elongation complex. However, little is known about the role of key elements of the RNAP active site in translesion transcription. Here, using recombinantly expressed proteins, in vitro transcription, kinetic analyses, and in vivo cell viability assays, we report that point amino acid substitutions in the trigger loop, a flexible element of the active site involved in nucleotide addition, can stimulate translesion RNA synthesis by Escherichia coli RNAP without altering the fidelity of nucleotide incorporation. We show that these substitutions also decrease transcriptional pausing and strongly affect the nucleotide addition cycle of RNAP by increasing the rate of nucleotide addition but also decreasing the rate of translocation. The secondary channel factors DksA and GreA modulated translesion transcription by RNAP, depending on changes in the trigger loop structure. We observed that although the mutant RNAPs stimulate translesion synthesis, their expression is toxic in vivo, especially under stress conditions. We conclude that the efficiency of translesion transcription can be significantly modulated by mutations affecting the conformational dynamics of the active site of RNAP, with potential effects on cellular stress responses and survival.


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , RNA Bacteriano/biossíntese , Transcrição Gênica , RNA Polimerases Dirigidas por DNA/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , RNA Bacteriano/genética
2.
Biochem Biophys Res Commun ; 510(1): 122-127, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30665719

RESUMO

DNA lesions can severely compromise genome stability and lead to cell death if unrepaired. RNA polymerase (RNAP) is known to serve as a sensor of DNA damage and to attract DNA repair factors to the damaged template sites. Here, we systematically investigated the ability of Escherichia coli RNAP to transcribe DNA templates containing various types of DNA lesions, and analyzed their effects on transcription fidelity. We showed that transcription is strongly inhibited on templates containing cyclobutane thymine dimers, 1,N6-ethenoadenine and abasic sites, while 8-oxoguanine and thymine glycol have mild effects on transcription efficiency. Similarly to many polymerases, E. coli RNAP follows the "A" rule during nucleotide insertion opposite abasic sites and bulky lesions, and can also incorporate and efficiently extend an adenine nucleotide opposite 8-oxoguanine. Mutations in RNAP regions around the templating nucleotide decrease the efficiency of translesion synthesis, likely by altering the RNAP-template contacts in the active site. Thus, DNA lesions can lead to distinct outcomes in transcription, depending on the severity of the damage and contacts of the damaged template with the active site of RNAP.


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , DNA/química , Escherichia coli/genética , RNA/biossíntese , Dano ao DNA , Reparo do DNA , Guanina/análogos & derivados , Dímeros de Pirimidina , Transcrição Gênica
3.
Sci Rep ; 8(1): 10314, 2018 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-29985422

RESUMO

Eukaryotic DNA polymerase eta (Pol η) plays a key role in the efficient and accurate DNA translesion synthesis (TLS) opposite UV-induced thymine dimers. Pol η is also involved in bypass of many other DNA lesions but possesses low fidelity on undamaged DNA templates. To better understand the mechanism of DNA synthesis by Pol η we investigated substitutions of evolutionary conserved active site residues Gln55 and Arg73 in Saccharomyces cerevisiae Pol η. We analyzed the efficiency and fidelity of DNA synthesis by the mutant Pol η variants opposite thymine dimers, abasic site, thymine glycol, 8-oxoguanine and on undamaged DNA. Substitutions Q55A and R73A decreased the catalytic activity and significantly affected DNA damage bypass by Pol η. In particular, the Q55A substitution reduced the efficiency of thymine dimers bypass, R73A had a stronger effect on the TLS-activity opposite abasic site, while both substitutions impaired replication opposite thymine glycol. Importantly, the R73A substitution also increased the fidelity of Pol η. Altogether, these results reveal a key role of residues Gln55 and Arg73 in DNA synthesis opposite various types of DNA lesions and highlight the evolutionary importance of the Pol η TLS function at the cost of DNA replication accuracy.


Assuntos
Reparo do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Arginina/genética , Arginina/metabolismo , Domínio Catalítico , Dano ao DNA , Replicação do DNA , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/genética , Glicina/química , Glicina/genética , Glicina/metabolismo , Guanina/análogos & derivados , Guanina/química , Mutagênese Sítio-Dirigida , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Timina/análogos & derivados , Timina/química
4.
DNA Repair (Amst) ; 22: 67-76, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25108837

RESUMO

Human DNA polymerase iota (Pol ι) is a Y-family polymerase that can bypass various DNA lesions but possesses very low fidelity of DNA synthesis in vitro. Structural analysis of Pol ι revealed a narrow active site that promotes noncanonical base-pairing during catalysis. To better understand the structure-function relationships in the active site of Pol ι we investigated substitutions of individual amino acid residues in its fingers domain that contact either the templating or the incoming nucleotide. Two of the substitutions, Y39A and Q59A, significantly decreased the catalytic activity but improved the fidelity of Pol ι. Surprisingly, in the presence of Mn(2+) ions, the wild-type and mutant Pol ι variants efficiently incorporated nucleotides opposite template purines containing modifications that disrupted either Hoogsteen or Watson-Crick base-pairing, suggesting that Pol ι may use various types of interactions during nucleotide addition. In contrast, in Mg(2+) reactions, wild-type Pol ι was dependent on Hoogsteen base-pairing, the Y39A mutant was essentially inactive, and the Q59A mutant promoted Watson-Crick interactions with template purines. The results suggest that Pol ι utilizes distinct mechanisms of nucleotide incorporation depending on the metal cofactor and reveal important roles of specific residues from the fingers domain in base-pairing and catalysis.


Assuntos
Domínio Catalítico , DNA Polimerase Dirigida por DNA/química , Sequência de Aminoácidos , Coenzimas/metabolismo , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Humanos , Magnésio/metabolismo , Manganês/metabolismo , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Ligação Proteica , Purinas/metabolismo , DNA Polimerase iota
5.
J Biol Chem ; 287(28): 23779-89, 2012 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-22605342

RESUMO

RNA polymerase (RNAP) from thermophilic Thermus aquaticus is characterized by higher temperature of promoter opening, lower promoter complex stability, and higher promoter escape efficiency than RNAP from mesophilic Escherichia coli. We demonstrate that these differences are in part explained by differences in the structures of the N-terminal regions 1.1 and 1.2 of the E. coli σ(70) and T. aquaticus σ(A) subunits. In particular, region 1.1 and, to a lesser extent, region 1.2 of the E. coli σ(70) subunit determine higher promoter complex stability of E. coli RNAP. On the other hand, nonconserved amino acid substitutions in region 1.2, but not region 1.1, contribute to the differences in promoter opening between E. coli and T. aquaticus RNAPs, likely through affecting the σ subunit contacts with DNA nucleotides downstream of the -10 element. At the same time, substitutions in σ regions 1.1 and 1.2 do not affect promoter escape by E. coli and T. aquaticus RNAPs. Thus, evolutionary substitutions in various regions of the σ subunit modulate different steps of the open promoter complex formation pathway, with regions 1.1 and 1.2 affecting promoter complex stability and region 1.2 involved in DNA melting during initiation.


Assuntos
RNA Polimerases Dirigidas por DNA/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Fator sigma/genética , Thermus/genética , Transcrição Gênica , Sequência de Aminoácidos , Temperatura Baixa , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/enzimologia , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Dados de Sequência Molecular , Regiões Promotoras Genéticas/genética , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Homologia de Sequência de Aminoácidos , Fator sigma/metabolismo , Especificidade da Espécie , Thermus/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...